

Pruebas libres

Módulo: Comunicaciones Industriales

Orientaciones pedagógicas

Este módulo profesional contiene la formación necesaria para desarrollar proyectos de sistemas de comunicación y supervisión industrial para diferentes plantas de producción.

El desarrollo de este tipo de proyectos incluye aspectos como:

- La identificación y aplicación de cada uno de los buses de comunicación actual, dependiendo de su aplicación
- La selección de los diferentes dispositivos necesarios para la integración de los equipos en una red de comunicación.
- La conexión, montaje y configuración de los equipos que intervienen en una red informática.
- La representación de croquis y esquemas en aplicaciones de comunicación industrial.
- La configuración de cada uno de los dispositivos que intervienen.
- La conexión y montaje de dispositivos.
- La programación de equipos.
- La verificación de la puesta en servicio.

Las actividades profesionales asociadas a esta función se aplican en:

- La selección de equipos que intervienen en una red local informática.
- La selección de dispositivos para la modificación y/o adaptación de equipos, de forma que se puedan integrar en una red de comunicación industrial.
- La modificación y/o adaptación de programas de los dispositivos en red.
- El desarrollo de programas de control para el intercambio de datos entre los dispositivos en red.
- La verificación del funcionamiento de la red de comunicación así como de los sistemas asociados.

Prueba de evaluación

La finalidad de esta prueba consistirá en comprobar que los aspirantes han alcanzado las distintas capacidades terminales y competencias profesionales del módulo profesional.

La duración de la prueba será de **240 minutos**.

La prueba de evaluación constará de las siguientes partes:

- Prueba de conocimientos teóricos (50%). Duración: 120 minutos.
 - o Preguntas tipo test (40%). Ocho preguntas con cuatro posibles respuestas.
 - Preguntas a desarrollar (60%). Seis cuestiones/ejercicios de conocimientos teóricos.

La prueba de conocimientos teóricos será **eliminatoria**, y en caso de no aprobar, no se hará la prueba de conocimientos prácticos, evaluando el módulo como **no superado**.

- Prueba de conocimientos prácticos (50%). Duración: 120 minutos.
 - Un problema de automatización que tendrá que resolverse, implementarse y ejecutarse en el autómata programable Siemens S7-1200.

Bibliografía

La bibliografía recomendada para superar la prueba es la que se indica en la siguiente tabla:

Título	Autor/es	Editorial
Autómatas programables	Josep Balcells José Luis Romeral	Marcombo
Autómatas programables Siemens Grafcet y Guía Gemma con TIA Portal	Ramón L. Yuste Vicente Guerrero	Marcombo
Comunicaciones industriales. Guía práctica	Aquilino Rodríguez Penin	Marcombo
Comunicaciones industriales	Vicente Guerrero Ramón L. Yuste Luís Martínez	Marcombo/Alfaomega
Comunicaciones industriales y WinCC	Luís Peciña Belmonte	Marcombo
Step 7. Una manera fácil de programar PLC de Siemens	Pilar Mengual	Marcombo
Comunicaciones y redes de computadores	William Stallings	Pearson Prentice Hall
Telecomunicaciones. Tecnologías, redes y servicios	José Manuel Huidobro	Ra-Ma
Transmisión de datos y redes de comunicaciones (2ª ed)	Behrouz A. Forouzan	McGraw Hill
Manuales Siemens	Siemens	Siemens

Contenidos

1. Introducción a las redes de comunicaciones

- 1.1 Fundamentos de la comunicación
- 1.2 Introducción y características
- 1.3 Introducción a los medios de transmisión
 - 1.3.1 Características físicas del medio
 - 1.3.2 Banda ancha y banda base
 - 1.3.3 Ancho de banda de un canal
 - 1.3.4 Velocidades de comunicación, transmisión y transferencia
 - 1.3.5 Capacidad de un canal
 - 1.3.6 Atenuación
 - 1.3.7 Distorsión por retardo de grupo
 - 1.3.8 Ruido
 - 1.3.9 Medios de transmisión
- 1.4 Estructuras básicas en la comunicación
 - 1.4.1 Formas de transmisión de datos
 - 1.4.2 Transmisión asíncrona
 - 1.4.3 Transmisión síncrona
 - 1.4.4 Modos de comunicación punto a punto
 - 1.4.5 Topologías de redes multipunto
- 1.5 Introducción a la codificación de datos
 - 1.5.1 Codificación en las comunicaciones analógicas
 - 1.5.2 Proceso de modulación
 - 1.5.3 Codificación en las comunicaciones digitales
- 1.6 Principios generales de multiplexación

2. Protocolos y estándares. Modelos OSI y TCP/IP

- 2.1 Arquitectura de protocolos
- 2.2 Modelo OSI
 - 2.2.1 Introducción
 - 2.2.2 Funcionamiento
- 2.3 Modelo TCP/IP
 - 2.3.1 Introducción
 - 2.3.2 Modelo TCP/IP y OSI
 - 2.3.3 Protocolos
 - 2.3.4 Nivel de red
 - 2.3.5 Nivel de transporte

- 2.3.6 Nivel de aplicación
- 2.4 Comunicaciones y normalización
 - 2.4.1 Introducción
 - 2.4.2 Organismos de normalización
- 2.5 Normas físicas de interfaz
 - 2.5.1 Introducción
 - 2.5.2 Norma RS-232
 - 2.5.3 Norma RS-422
 - 2.5.4 Norma RS-485

3. Capa de enlace. Acceso al medio

- 3.1 Capa de enlace
- 3.2 Estructura del mensaje
- 3.3 Detección de errores
 - 3.3.1 Sistemas autodetectores
 - 3.3.1.1 Control de paridad
 - 3.3.1.2 Checksum
 - 3.3.1.3 CRC
- 3.4 Control de errores
 - 3.4.1 Pasivos
 - 3.4.2 Activos
- 3.5 Control de flujo
 - 3.5.1 Parada y espera
 - 3.5.2 Ventana deslizante
- 3.6 Protocolos de enlace de datos
 - 3.6.1 XMODEM
 - 3.6.2 Protocolo X Format de Omron
 - 3.6.3 Protocolo SysmacWay de Omron
- 3.7 Control de acceso al medio
 - 3.7.1 Introducción
 - 3.7.2 Maestro/esclavo
 - 3.7.3 Paso de testigo delegado
 - 3.7.4 Paso de testigo
 - 3.7.5 Acceso múltiple por división de tiempo (TDMA)
 - 3.7.6 CSMA/CD
 - 3.7.7 CSMA/CR/CA

4. Redes de área local y redes de área amplia

- 4.1. Características generales de las LAN
- 4.2. Topologías y medios de transmisión
- 4.3. Modelo IEEE 802.3 y Ethernet
 - 4.3.1. El estándar IEEE 802
 - 4.3.2. El estándar IEEE 802 y OSI
 - 4.3.3. Ethernet
 - 4.3.3.1. Tipo de cableado
 - 4.3.3.2. Cables y conectores
- 4.4. Dispositivos de interconexión de redes
 - 4.4.1. Repetidor
 - 4.4.2. Hub
 - 4.4.3. Switch
 - 4.4.4. Bridge
 - 4.4.5. Router
 - 4.4.6. Gateway
- 4.5. Redes de área local de alta velocidad
 - 4.5.1. Fast Ethernet
 - 4.5.2. Gigabit Ethernet
 - 4.5.3. 10-Gigabit Ethernet
- 4.6. Características generales de las WAN
 - 4.6.1. Líneas alquiladas
 - 4.6.2. Conmutación de circuitos
 - 4.6.3. Conmutación de paquetes
 - 4.6.4. Conmutación de paquetes mediante circuitos virtuales
 - 4.6.5. Conmutación de paquetes mediante datagramas
- 4.7. Conmutación rápida de paquetes
 - 4.7.1. ATM
 - 4.7.2. FrameRelay
- 4.8. Las redes IP
 - 4.8.1. Direccionamiento IPV4
 - 4.8.2. Direccionamiento IPV6
 - 4.8.3. Direccionamiento por dominios
- 4.9. Redes inalámbricas
 - 4.9.1. Introducción
 - 4.9.2. Modos de trabajo
 - 4.9.3. Requisitos específicos de las redes inalámbricas
 - 4.9.4. Clasificación

- 4.9.5. Comparación de las tecnologías inalámbricas
- 4.9.6. IEEE 802.11 (WLAN)
- 4.9.7. IEEE 802.16 (WIMAX)
- 4.9.8. WLAN WIMAX

5. Introducción a las Comunicaciones Industriales

- 5.1. Introducción
- 5.2. Estructura jerárquica de las comunicaciones industriales
 - 5.2.1. Pirámide CIM
- 5.3. Redes LAN industriales
 - 5.3.1. MAP
 - 5.3.2. MINIMAP
 - 5.3.3. Ethernet
- 5.4. Buses de campo
 - 5.4.1. Evolución
 - 5.4.2. Bus de campo
 - 5.4.3. Buses de campo y niveles OSI
 - 5.4.4. Buses propietarios y abiertos
 - 5.4.5. Características fundamentales según su conectividad
 - 5.4.6. Ventajas de los buses de campo
 - 5.4.7. Inconvenientes de los buses de campo
 - 5.4.8. Tipos de buses de campo
 - 5.4.9. Transmisión de datos en buses de campo
- 5.5. Buses de campo: Profibus
- 5.6. Buses de campo: Modbus
- 5.7. Buses de campo: AS-i
- 5.8. Buses de campo: Interbus
- 5.9. Buses de campo: Devicenet
- 5.10. Buses de campo Schneider Electric
- 5.11. Buses de campo Siemens
- 5.12. Buses de campo Omron
- 5.13. Redes inalámbricas en entornos industriales
 - 5.13.1. Introducción
 - 5.13.2. Modos de funcionamiento
 - 5.13.3. Bluetooth (802.15.1)
 - 5.13.4. IEEE 802.15.4: Zigbee
 - 5.13.5. Elementos wireless
- 5.14. OPC OLE Process Control
 - 5.14.1. Introducción

5.14.2. Origen

6. Bus de campo industrial AS-i

- 6.1. Introducción y características
 - 6.1.1. Introducción
 - 6.1.2. Especificaciones de AS-i
 - 6.1.3. Topologías
 - 6.1.4. Comparativa entre versiones
 - 6.1.5. Ciclo de lectura y escritura en los esclavos
 - 6.1.6. Equipos participantes en un bus AS-i
 - 6.1.7. Otros componentes de una red AS-i
- 6.2. Configuración y programación de una red AS-i con S7-300
 - 6.2.1. Direccionamiento de los esclavos AS-i
 - 6.2.2. Montaje de la red AS-i
 - 6.2.3. Configuración del maestro AS-i
- 6.3. Ejemplos de aplicación

7. Buses de campo MPI y Profibus

- 7.1. Red interface multipunto (MPI)
 - 7.1.1. Introducción
 - 7.1.2. Características
 - 7.1.3. Configuración
 - 7.1.3.1. Configuración de la interface PG/PC (PC Adapter MPI)
 - 7.1.3.2. Configuración hardware de cada PLC
 - 7.1.3.3. Configuración con NetPro de la red MPI
 - 7.1.3.4. Conexión física de la red MPI → PC con PLCs
 - 7.1.3.5. Configurar la tabla de datos globales
 - 7.1.4. Ejercicios
- 7.2. Red Profibus
 - 7.2.1. Introducción
 - 7.2.2. Objetivos Profibus Internacional
 - 7.2.3. Ventajas que ofrece Profibus
 - 7.2.4. Familia Profibus
 - 7.2.5. Características técnicas
 - 7.2.6. Método de acceso: principio de funcionamiento
 - 7.2.6.1. Principio de funcionamiento
 - 7.2.6.2. Recepción del testigo
 - 7.2.6.3. Emisión del testigo
 - 7.2.6.4. Añadir y eliminar estaciones

- 7.2.6.5. Tiempo de rotación de testigo
- 7.2.7. Tecnología de transmisión RS485
- 7.2.8. Tecnología de transmisión por fibra óptica
- 7.2.9. Servicios de comunicación
- 7.3. Profibus DP
 - 7.3.1. Introducción
 - 7.3.2. Características
 - 7.3.3. Equipos participantes en una red Profibus DP
- 7.4. Configuración y programación de una red Profibus con S7-300

8. Ethernet industrial. Profinet

- 8.1. Ethernet industrial
 - 8.1.1. Introducción
 - 8.1.2. Características
 - 8.1.3. Componentes de red pasivos para Ethernet industrial
 - 8.1.4. Componentes de red activos para Ethernet industrial
 - 8.1.5. Funciones de comunicación/servicios
- 8.2. Configuración y programación de una red Ethernet con S7-300
- 8.3. Profinet
 - 8.3.1. Introducción
 - 8.3.2. Objetivos y ventajas de Profinet
 - 8.3.3. Arquitectura Profinet
 - 8.3.4. Profinet en Siemens
 - 8.3.5. Tipos de Profinet
 - 8.3.6. Redes por cable
 - 8.3.7. Switch y RouterProfinet
- 8.4. Configuración y programación de una red Profinet con S7-300

9. Programación de autómatas Siemens S7-300 y S7-1200

- 9.1. Los autómatas S7-1200
 - 9.1.1. Partes del autómata S7-1200
 - 9.1.2. Memoria en los sistemas S7-1200
 - 9.1.3. Entradas y salidas digitales
 - 9.1.4. Programación con TIA Portal
- 9.2. Operaciones lógicas con bits
 - 9.2.1. Operaciones AND, OR y NOT
 - 9.2.2. Operaciones S y R
 - 9.2.3. Operaciones SET_BF y RESET_BF
- 9.3. Temporizadores y contadores

- 9.4. Operaciones con flancos
- 9.5. Operaciones de carga, transferencia y comparación
- 9.6. Operaciones aritméticas y trigonométricas
- 9.7. Operaciones de desplazamiento y rotación
- 9.8. Operaciones de salto
- 9.9. Funciones
- 9.10. DB's y FB's
- 9.11. Otros elementos de programación
 - 9.11.1. Entradas y salidas analógicas
 - 9.11.2. Contadores de alta velocidad
- 9.12. Comunicaciones
 - 9.12.1. Comunicación AS-i
 - 9.12.2. Comunicación MPI
 - 9.12.3. Comunicación Profibus DP
 - 9.12.4. Comunicación Ethernet industrial
 - 9.12.5. Comunicación Profinet

Criterios de evaluación

1. Reconoce los sistemas de comunicación industrial y las normas físicas utilizadas, identificando los distintos elementos que los componen y relacionando su funcionamiento con las prestaciones del sistema.

Criterios de evaluación:

- a) Se ha identificado la funcionalidad de los sistemas de comunicación industrial y sus posibilidades de integración e intercambio de datos.
- b) Se ha reconocido la estructura de un sistema de comunicación industrial.
- c) Se han identificado los niveles funcionales y operativos, relacionándolos con los campos de aplicación característicos.
- d) Se han reconocido las características que determinan los entornos industriales de control distribuido y entornos C.I.M (computer integrated manufacturing)
- e) Se ha utilizado el modelo de referencia OSI (open system interconnection) de ISO (international standard organization), describiendo la función de cada uno de sus niveles y la relación entre ellos.
- f) Se han determinado las técnicas de transmisión de datos en función de la tecnología empleada.
- g) Se han utilizado los parámetros de comunicación, identificando la función que realiza en la transmisión de datos serie.
- h) Se han estudiado las normas físicas utilizadas en redes de comunicación industrial identificando los interfaces y elementos de conexión.
- i) Se han reconocido las diferentes técnicas de control de flujo, de detección de errores y de acceso al medio en la transmisión de datos.

2. Elabora programas básicos de comunicación entre un ordenador y periféricos externos de aplicación industrial, utilizando interfaces y protocolos normalizados y aplicando técnicas estructuradas.

Criterios de evaluación:

- a) Se han identificado los campos básicos que incluyen un protocolo de comunicación industrial.
- b) Se han identificado los interfaces para los diferentes tipos de comunicación industrial.
- c) Se ha configurado la comunicación entre un ordenador y un equipo industrial.
- d) Se han seleccionado los comandos del protocolo de comunicación que hay que utilizar para realizar un programa de comunicación, identificando el método para la detección y corrección de posibles errores que se puedan producir.
- e) Se ha elaborado el diagrama de flujo que responde al funcionamiento de un programa de comunicación industrial, utilizando simbología normalizada.
- f) Se ha codificado el programa de comunicación en un lenguaje de alto nivel.
- g) Se ha verificado la idoneidad del programa con el diagrama de flujo elaborado y con las especificaciones propuestas.
- h) Se ha documentado adecuadamente el programa, aplicando los procedimientos estandarizados con la suficiente precisión para asegurar su posterior mantenimiento.
- 3. Monta una red local de ordenadores, configurando los parámetros y realizando las pruebas para su puesta en servicio.

Criterios de evaluación:

- a) Se han verificado las características de la instalación eléctrica y las condiciones ambientales requeridas, especificando las condiciones estándar que debe reunir una sala donde se ubica un sistema informático.
- b) Se han enumerado las distintas partes que configuran una instalación informática, indicando función, relación y características de cada una de ellas.
- Se han identificado las distintas configuraciones topológicas propias de las redes locales de ordenadores, indicando las características diferenciales y de aplicación de cada una de ellas.
- d) Se han identificado los tipos de soporte de transmisión utilizados en las redes locales de comunicación, indicando las características y parámetros más representativos de los mismos.
- e) Se ha identificado la función de cada uno de los hilos del cable utilizado en una red de área local, realizando latiguillos para la interconexión de los diferentes componentes de la red
- f) Se ha preparado la instalación de suministro de energía eléctrica y, en su caso, el sistema de alimentación ininterrumpida, comprobando la seguridad eléctrica y ambiental requerida.
- g) Se ha realizado el conexionado físico de las tarjetas, equipos y demás elementos necesarios para la ejecución de la red, siguiendo el procedimiento normalizado y/o documentado.

- h) Se ha realizado la carga y configuración del sistema operativo de la red, siguiendo el procedimiento normalizado e introduciendo los parámetros necesarios para adecuarla al tipo de aplicaciones que se van a utilizar.
- i) Se han configurado los recursos que se pueden compartir en una red local de ordenadores y los modos usuales de utilización de los mismos.
- 4. Programa y configura los diferentes buses utilizados en el ámbito industrial, identificando los elementos que lo integran y relacionándolos con el resto de dispositivos que configuran un sistema automático.

Criterios de evaluación:

- a) Se han identificado los diferentes buses industriales actuales, relacionándolos con la pirámide de las comunicaciones.
- b) Se han configurado los equipos de una red industrial para la comunicación entre dispositivos.
- c) Se ha programado una red industrial para el intercambio de datos entre dispositivos.
- d) Se han configurado los componentes para su utilización en la interconexión de diferentes redes por cambio de protocolo o medio físico.
- e) Se han utilizado técnicas de control remoto para el envío o recepción de datos entre el proceso industrial y el personal de mantenimiento o de control.
- f) Se han utilizado diferentes medios físicos para la comunicación entre equipos y sistemas.
- g) Se han representado los sistemas de comunicación industrial mediante bloques funcionales.
- h) Se han seleccionado los equipos y elementos de la instalación a partir de documentación técnica de los fabricantes.
- 5. Configura los diferentes equipos de control y supervisión que intervienen en un sistema automático, programando los equipos e integrando las comunicaciones en una planta de producción.

Criterios de evaluación:

- a) Se han relacionado las funciones que ofrece un sistema de supervisión y control con aplicaciones industriales de automatización.
- b) Se han reconocido todas las herramientas de configuración, relacionándolas con la función que van a realizar dentro de la aplicación.
- c) Se han configurado avisos y alarmas, registrándolas en un archivo para un posterior tratamiento.
- d) Se han configurado y programado sistemas de control y supervisión de diferentes fabricantes
- e) Se han integrado paneles de operador y ordenadores como dispositivos de control, supervisión y adquisición de datos en una red de comunicación industrial.
- f) Se ha configurado un sistema de control y supervisión para la presentación gráfica de datos.
- g) Se ha dado funcionalidad al sistema de control para trabajar con datos relativos al mantenimiento de la máquina o al proceso industrial.

6. Verifica el funcionamiento del sistema de comunicación industrial, ajustando los dispositivos y aplicando normas de seguridad.

Criterios de evaluación:

- a) Se han comprobado las conexiones entre dispositivos.
- b) Se han verificado los parámetros de configuración de cada equipo.
- c) Se ha verificado el funcionamiento del programa para que respete las especificaciones dadas.
- d) Se ha comprobado la respuesta del sistema ante cualquier posible anomalía.
- e) Se han medido parámetros característicos de la instalación.
- f) Se han respetado las normas de seguridad.
- 7. Repara disfunciones en sistemas de comunicación industrial, observando el comportamiento del sistema y utilizando herramientas de diagnosis.

Criterios de evaluación:

- a) Se han reconocido puntos susceptibles de avería.
- b) Se ha identificado la tipología y las características de las averías de naturaleza física o lógica que se presentan en los sistemas de comunicación industrial.
- c) Se han identificado los síntomas de la avería, caracterizando los efectos que produce a través de las medidas realizadas y de la observación del comportamiento del sistema y de los equipos.
- d) Se ha reparado la avería.
- e) Se ha restablecido el funcionamiento.
- f) Se han elaborado registros de avería.

Material a traer por el alumnado

El alumnado deberá traer el siguiente material:

- Bolígrafo
- Calculadora
- Ordenador portátil con las siguientes características:
 - Conector RJ45 hembra
 - Software TIA Portal V16 de Siemens

Atención al alumnado

El horario de atención al alumnado será los <u>viernes de 9:50 a 10:45 h</u>. La atención será bajo demanda a través del email: *av.alandipajares* @*edu.gva.es*.

IES Botànic Cavanilles – La Vall d'Uixó Departamento de Electricidad – Electrónica

> Antonio Vicente Alandí Pajares Profesor de Sistemas Electrónicos

